Mathematical Model of Steroidogenesis in Fathead Minnow Ovaries to Predict Biochemical Response to Endocrine Active Compounds

Michael S. Breen,¹ Miyuki Breen,² Daniel L. Villeneuve,³ Gerald T. Ankley,³ Rory B. Conolly¹

¹National Center for Computational Toxicology, US EPA, Research Triangle Park, North Carolina

²Biomathematics Program, Department of Statistics, North Carolina State University, Raleigh, North Carolina

³Mid-Continent Ecology Division, US EPA, Duluth, Minnesota

International Science Forum, Systems Biology Models of the HPG Axis, May 22, 2007

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Effects of EAC on HPG Axis

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Effects on Steroid Metabolism

Chemical	Mode of Action	Source
Fadrozole	Inhibit CYP19	Breast cancer therapy
Trilostane	Inhibit 3βHSD	Cushing's disease treatment

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Mechanistic Computational Steroidogenesis Model

- Improve understanding of doseresponse behavior for EAC
- Help define mechanism of actions for poorly characterized chemicals
- Serve as a basis to identify predictive biomarkers (patterns of steroid changes) indicative of exposure and adverse effects
- Support environmental human health and ecological risk assessments
- Help screen drug candidates based on steroid effect in early phase of drug development

Population Effects Model

Coupled Systems Model

HPG-Axis
Systems Model

Coupled Differential Equations

Steroidogenesis Model

Mechanistic Models

Population Model

Statistical Model

RESEARCH & DEVELOPMENT

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Endocrine Disruption in Fish

Fathead minnow

- Convincing evidence that fish are affected at individual and population levels
- Fish may serve as effective environmental sentinels for possible effects in other vertebrates
- Evolutionarily conserved HPG axis

Objective

Create a computational model of ovarian steroidogenesis and estimate parameters to predict synthesis and secretion of T and E2 for *in vitro* baseline and fadrozole studies

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

In Vitro Steroidogenesis Experiments: Baseline

Small fish culture facility

- Dissect fish ovary
- Incubate ovary in medium supplemented with cholesterol
- Collect medium at six time points over 31.5 hr
- Measure medium concentrations of testosterone (T) and estradiol (E2) using radioimmunoassay

Fathead minnows

In Vitro Steroidogenesis Experiments: Fadrozole

Small fish culture facility

- Dissect fish ovary
- Incubate ovary in medium supplemented with cholesterol and five fadrozole (FAD) concentrations
- Collect medium at 14.5 hr
- Measure medium concentrations of testosterone (T) and estradiol (E2) using radioimmunoassay

Fathead minnows

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Conceptual Steroidogenesis Model

- 6 unique enzymes
- 12 enzymatic reactions
- 4 secreted steroids

RESEARCH & DEVELOPMENT

Computational Steroidogenesis Model

- 6 transport rates
- 12 first-order enzymatic reaction rates
- 2 enzyme inhibition constants

RESEARCH & DEVELOPMENT

Dynamic Mass Balances

Ovary:
$$V_{\text{ovy}} = P_{x,\text{ovy}} - U_{x,\text{ovy}} + I_{x,\text{ovy}} - S_{x,\text{ovy}}$$

Net metabolic rate Net uptake rate

Medium:
$$V_{\text{med}} = S_{x,\text{ovy}}$$
Ovary secretion rate

- Yields a system of coupled differential equations
- 20 model parameters

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Measured Steroids from Baseline Study

- Good evidence steroid synthesis is operating near steady-state during experiments
- Steady-state assumption reduces model complexity

Steady-State Analysis

- Set differential equations in ovary to zero to yield algebraic equations
- Determined analytical solutions for testosterone $(C_{T,med})$ and estradiol $(C_{E2,med})$ in medium
- Solutions depend on 11 out of 20 parameters

$$C_{\text{T,med}}(t) = \frac{k_0 k_9 k_{10} \left(k_{16} + k_{15} C_{FAD,med}\right) \left(k_{17} + k_{15} C_{FAD,med}\right) t}{D_1 D_2}$$

where:
$$D_1 = k_9 k_{16} + k_9 k_{15} C_{FAD,med} + k_{11} k_{16} + k_{18} k_{16} + k_{18} k_{15} C_{FAD,med}$$

$$D_2 = k_{10} k_{17} + k_{10} k_{15} C_{FAD,med} + k_{12} k_{17}$$

$$C_{FAD,med} = \text{fadrozole conc. in medium}$$

Steady-State Analysis

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Parameter Estimation

where: $C_{
m T,med}^{d,i}$ = measured testosterone for d^{th} FAD dose at i^{th} time $C_{
m T,med}$ = model-predicted testosterone $C_{
m E2,med}^{d,i}$ = measured estradiol for d^{th} FAD dose at i^{th} time $C_{
m E2,med}$ = model-predicted estradiol $C_{
m EAD,med}^{d}$ = measured fadrozole for d^{th} FAD dose

- Applied a nonlinear iterative optimization algorithm
- Simultaneously estimated parameters using data from baseline and fadrozole-exposure studies

RESEARCH & DEVELOPMENT

Estimated Parameters

Ovary Uptake of Cholesterol and Fadrozole

k ₀	15401.470	pg ml ⁻¹ hr ⁻¹
k ₁₅	0.0015	Partition coefficient (dimensionless)

Secretion of Testosterone and Estradiol

<i>k</i> ₁₀	1726.553	hr ⁻¹
<i>k</i> ₁₈	149.301	hr ⁻¹
<i>k</i> ₁₉	102.171	hr ⁻¹

First-order Enzyme Kinetics with Inhibition by Fadrozole

k ₉	0.509	hr ⁻¹	* Literature values from
<i>k</i> ₁₁	5.8*	hr ⁻¹	fish experiments
k ₁₂	3.2*	hr ⁻¹	
<i>k</i> ₁₃	356.217	hr ⁻¹	
<i>k</i> ₁₆	8143.017	pg ml ⁻¹	FAD inhibition
k ₁₇	4671.198	pg ml ⁻¹ }	constants

Breen MS et al. Annals of Biomedical Engineering, 2007

RESEARCH & DEVELOPMENT

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Evaluation of Model Fit: Baseline Study

Breen MS et al. Annals of Biomedical Engineering, 2007

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Fadrozole Study

- Expect E2
 to decrease
 with
 increasing
 FAD
- Expect T to increase with increasing FAD

RESEARCH & DEVELOPMENT

Evaluation of Model Fit: Fadrozole Study

Breen MS et al. Annals of Biomedical Engineering, 2007

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Model-based Experimental Design

Model-based Hypothesis:

T does not change with increasing FAD due to large secretion of AD into medium

Measurements in next experiment

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Sensitivity Analysis

Relative Sensitivities:

$$RST_{k_i}\left(C_{\text{T,med}}, k_i\right) = \frac{\delta C_{\text{T,med}}}{\delta k_i} \left(\frac{k_i}{C_{\text{T,med}}}\right)$$

$$RSE2_{k_i} \left(C_{E2,\text{med}}, k_i \right) = \frac{\delta C_{E2,\text{med}}}{\delta k_i} \left(\frac{k_i}{C_{E2,\text{med}}} \right)$$

where: $C_{\text{T.med}}$ = model-predicted testosterone

 $C_{\rm E2.med}$ = model-predicted estradiol

 $k_i = i^{\text{th}} \text{ parameter}$

- Analytically determined partial derivatives with respect to each parameter
- Evaluated relative sensitivities for control and each fadrozole dose

Sensitivity Analysis

Breen MS *et al.* Ann. Biomed. Eng., 2007

Sensitivity Analysis

Measurements in next experiment

- Effects of EAC on steroidogenesis
- Computational model of ovarian steroidogenesis to predict biochemical response for baseline and fadrozole studies
 - In vitro steroidogenesis assay with ovary explants
 - Ovarian steroidogenesis model with enzyme inhibition by fadrozole
 - Steady-state analysis
 - Estimation of parameters
 - Assessment of model fit
 - Sensitivity analysis
- Summary

Summary

- Steroidogenesis model can predict T and E2 concentrations, in vitro, while reducing model complexity with steady-state assumption
- Sensitivity analysis indicates E1 pathway as preferred pathway for E2 synthesis
- Model and sensitivity analysis support hypothesis that T is unchanged with increasing FAD due to large secretion of AD into medium
- Mechanistic model can help plan experiments and better understand dose-response behavior of chemicals that alter activity of steroidogenic enzymes
- This capability could help define mechanisms of action for poorly characterized chemicals in support of environmental risk assessments

Related Presentations

- Poster #3: Mechanistic Computational Model of Steroidogenesis in H295R
 Cells: Predicting Biochemical Response to Endocrine Active Chemicals
- <u>Session IV: Plenary Session</u>: Mining Minnows and Building Models: An Integrated Systems Biology Approach to Link Mechanism of Action to Ecologically-Relevant Outcomes, Daniel Villeneuve

Acknowledgements

EPA – Duluth, MN
Dalma Martinovic
Elizabeth Durhan
Kathy Jensen
Michael Kahl
Elizabeth Makynen

EPA – Athens, GA Tim Collette Drew Ekman Quincy Teng EPA – RTP, NC Haluk Ozkaynak, NERL

EPA – Grosse Isle, MI David Miller

EPA – Cincinnati, OH
David Bencic
Iris Knoebl
Mitchell Kostich
James Lazorchak
David Lattier
Gregory Toth
Rong-Lin Wang

EPA STAR Program

Karen Watanabe (Oregon Health Sciences Univ.)
Nancy Denslow (University of Florida)
Maria Sepulveda (Purdue University)
Edward Orlando (Florida Atlantic University)

Pacific Northwest National Laboratory

Ann Miracle

US Army – Vicksburg, MS Edward Perkins